Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetrapotassium dodeca- μ-chloro-hexachloro-octahedro-hexatantalate, $\mathrm{K}_{4}\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6}$

Liesbet Jongen and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail:
gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Ta}-\mathrm{Cl})=0.002 \AA$
R factor $=0.029$
$w R$ factor $=0.067$
Data-to-parameter ratio $=23.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved
$\mathrm{K}_{4}\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6}$ was obtained as a by-product during the reaction of VCl_{3} and KCl in a sealed tantalum container. The compound is isotypic to $\mathrm{K}_{4} \mathrm{Nb}_{6} \mathrm{Cl}_{18}$ [Simon, von Schnering \& Schäfer (1968). Z. Anorg. Allg. Chem. 361, 235-246] and contains octahedral $\left(\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6}\right)^{4-}$ clusters with $2 / m$ site symmetry.

Comment

Tantalum ampoules are often used as reaction containers for halide melts because of the refractory and inert nature of the metal. With unstable transition metal halides such as VCl_{3} (Böcker, 1996), tantalum may, however, take part in the reaction. In an attempt to prepare KVCl_{3} from the reaction of $\mathrm{KCl}, \mathrm{VCl}_{3}$ and vanadium powder, we have not only obtained $\mathrm{K}_{2} \mathrm{TaCl}_{6}$ as a by-product (Jongen \& Meyer, 2004), but also $\mathrm{K}_{4}\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6}$. This appears to be the first report of such a ternary complex cluster tantalate, although the binary clusters $\mathrm{Ta}_{6} \mathrm{Cl}_{15}$ (von Schnering et al., 1999), $\mathrm{Ta}_{6} \mathrm{Br}_{14}$ (Bajan \& Meyer, 1995) and $\mathrm{Ta}_{6} \mathrm{I}_{14}$ (Artelt \& Meyer, 1993) are well known. Furthermore, with niobium there is a rich chemistry with [$\mathrm{Nb}_{6} \mathrm{Cl}_{12}$]-type cores in both binary and ternary compounds, for example, $\mathrm{Nb}_{6} \mathrm{Cl}_{14}$ (Simon et al., 1965), $\mathrm{K}_{4} \mathrm{Nb}_{6} \mathrm{Cl}_{18}$ (Simon et al., 1968) and $\mathrm{Rb}_{4} \mathrm{Nb}_{6} \mathrm{Cl}_{18}$ (Reckeweg \& Meyer, 1996).

Figure 1
The $\left[\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{4-}$ cluster anion. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x,-y,-z$; (ii) $x,-y, z$; (iii) $-x, y,-z$.]

Received 28 June 2004 Accepted 13 July 2004 Online 24 July 2004

Figure 2
The unit-cell contents of $\mathrm{K}_{4}\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6}$.
$\mathrm{K}_{4}\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6}$ crystallizes isotypic to $\mathrm{K}_{4}\left[\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6}$ (Simon et al., 1968) and contains octahedral clusters of Ta atoms, with $\mathrm{Ta}-\mathrm{Ta}$ distances between 2.8901 (7) and 2.9011 (5) \AA, which are in good agreement with the $\mathrm{Ta}-\mathrm{Ta}$ distances observed in $\mathrm{Ta}_{6} \mathrm{Cl}_{15}$ (von Schnering et al., 1999). Twelve chloride ions bridge the edges of the Ta_{6} octahedron, in order to form $\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right]^{2+}$ cationic cores. The coordination of the Ta_{6} octahedron is completed by a further six chloride ions that are placed terminally at the vertices of the octahedron. The $\mathrm{Ta}-\mathrm{Cl}$ distances for the terminal Cl atoms are 2.553 (3) and $2.600(2) \AA$, slightly longer than those for the bridging chloride atoms $[\mathrm{Ta}-\mathrm{Cl}=2.455(2)-2.474(2) \AA]$. The $\left[\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{4-}$ anions with site symmetry $2 / m$ form a facecentred arrangement, whereby the potassium ions hold the $\left[\mathrm{Ta}_{6} \mathrm{Cl}_{18}\right]^{4-}$ anions together by electrostatic forces.

Experimental

$\mathrm{K}_{4}\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6}$ was obtained as a by-product in the attempt to synthesize KVCl_{3}, starting from $\mathrm{VCl}_{3}, \mathrm{KCl}$, and V powder in a sealed tantalum container jacketed by a silica ampoule. The reaction mixture was heated to 1123 K for 10 d , and then cooled slowly to room temperature. Black single crystals of $\mathrm{K}_{4}\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6}$ were selected under a microscope in an argon-filled dry-box.

Crystal data

$$
\begin{aligned}
& \mathrm{K}_{4}\left[\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right] \mathrm{Cl}_{6} \\
& M_{r}=1880.20 \\
& \text { Monoclinic, } C 2 / m \\
& a=9.9900(12) \AA \\
& b=16.5228(18) \AA \\
& c=9.4745(10) \AA \\
& \beta=115.005(8) \AA \\
& V=1417.3(3) \AA^{\circ} \\
& Z=2
\end{aligned}
$$

$D_{x}=4.406 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 18943 reflections
$\theta=1.9-28.2^{\circ}$
$\mu=25.34 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Polyhedron, black
$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω and φ scans
Absorption correction: numerical
[X-RED32 (Stoe \& Cie, 2002)
and X-SHAPE (Stoe \& Cie,
1999)]
$T_{\text {min }}=0.034, T_{\text {max }}=0.101$
9391 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.067$
$S=1.04$
1608 reflections
70 parameters

1608 independent reflections
1423 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-21 \rightarrow 21$
$l=-12 \rightarrow 12$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.04 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.75 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.75 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL } 97 \\
& \text { Extinction coefficient: } 0.00046(6)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Ta} 1-\mathrm{Cl} 2^{\mathrm{iv}}$	$2.455(2)$	$\mathrm{Ta} 1-\mathrm{Ta} 2^{\mathrm{iv}}$	$2.8920(5)$
$\mathrm{Ta} 1-\mathrm{Cl} 1$	$2.469(2)$	$\mathrm{Ta} 1-\mathrm{Ta} 1^{\mathrm{v}}$	$2.8944(6)$
$\mathrm{Ta} 1-\mathrm{Cl} 3$	$2.473(2)$	$\mathrm{Ta} 1-\mathrm{Ta} 2$	$2.9011(5)$
$\mathrm{Ta} 1-\mathrm{Cl} 4$	$2.474(2)$	$\mathrm{Ta} 2-\mathrm{Cl} 2$	$2.464(2)$
$\mathrm{Ta} 1-\mathrm{Cl} 5$	$2.600(2)$	$\mathrm{Ta} 2-\mathrm{Cl} 1$	$2.472(2)$
$\mathrm{Ta} 1-\mathrm{Ta} 1^{\mathrm{ii}}$	$2.8901(7)$	$\mathrm{Ta} 2-\mathrm{Cl} 6$	$2.553(3)$
$\mathrm{Ta} 1^{\mathrm{ii}}-\mathrm{Ta} 1-\mathrm{Ta} 2^{\mathrm{iv}}$	$60.022(8)$	$\mathrm{Ta} 1^{\mathrm{v}}-\mathrm{Ta} 1-\mathrm{Ta} 2$	$59.869(14)$
$\mathrm{Ta} 1^{\mathrm{ii}}-\mathrm{Ta} 1-\mathrm{Ta} 1^{\mathrm{v}}$	90	$\mathrm{Ta} 1^{\mathrm{v}}-\mathrm{Ta} 2-\mathrm{T} 1^{\mathrm{ii}}$	$89.831(15)$
$\mathrm{Ta} 2^{\mathrm{iv}}-\mathrm{Ta} 1-\mathrm{Ta} 1^{\mathrm{v}}$	$60.179(13)$	$\mathrm{Ta} 1^{\mathrm{iv}}-\mathrm{Ta} 2-\mathrm{Ta} 1^{\mathrm{ii}}$	$59.952(14)$
$\mathrm{Ta} 1^{\mathrm{ii}}-\mathrm{Ta} 1-\mathrm{Ta} 2$	$60.125(8)$	$\mathrm{Ta} 1-\mathrm{Ta} 2-\mathrm{Ta} 1^{\text {ii }}$	$59.750(16)$
$\mathrm{Ta} 2^{\mathrm{iv}}-\mathrm{Ta} 1-\mathrm{Ta} 2$	$90.169(15)$		

Symmetry codes: (ii) $x,-y, z$; (iv) $-x,-y, 1-z$; (v) $-x, y, 1-z$.

The highest peak and deepest hole in the final difference map are 1.39 and $0.88 \AA$ from Ta2.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97.

References

Artelt, H. M. \& Meyer, G. (1993). Z. Kristallogr. 206, 306-307.
Bajan, B. \& Meyer, H.-J. (1995). Z. Kristallogr. 210, 607-607.
Böcker, M. (1996). Dissertation, Universität Hannover, Germany.
Brandenburg, K. (1996). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Jongen, L. \& Meyer, G. (2004). Acta Cryst. E60, i91-i92.
Reckeweg, O. \& Meyer, H.-J. (1996). Z. Kristallogr. 211, 396-396.
Schnering, H. G. von, Vu, D., Jin, S.-L. \& Peters, K. (1999). Z. Kristallogr. 214, 15-16.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
Simon, A., von Schnering, H. G. \& Woerle, H. (1965). Z. Anorg. Allg. Chem. 339, 155-170.
Simon, A., von Schnering, H. G. \& Schäfer, H. (1968). Z. Anorg. Allg. Chem. 361, 235-246.
Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2002). X-AREA (MainMenu Version 1.16) and X-RED32 (Version 1.22). Stoe \& Cie, Darmstadt, Germany.

