inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Liesbet Jongen and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Ta–Cl) = 0.002 Å R factor = 0.029 wR factor = 0.067 Data-to-parameter ratio = 23.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrapotassium dodeca-μ-chloro-hexachlorooctahedro-hexatantalate, K₄[Ta₆Cl₁₂]Cl₆

 $K_4[Ta_6Cl_{12}]Cl_6$ was obtained as a by-product during the reaction of VCl₃ and KCl in a sealed tantalum container. The compound is isotypic to $K_4Nb_6Cl_{18}$ [Simon, von Schnering & Schäfer (1968). *Z. Anorg. Allg. Chem.* **361**, 235–246] and contains octahedral ([Ta₆Cl₁₂]Cl₆)⁴⁻ clusters with 2/*m* site symmetry.

Received 28 June 2004 Accepted 13 July 2004 Online 24 July 2004

Comment

Tantalum ampoules are often used as reaction containers for halide melts because of the refractory and inert nature of the metal. With unstable transition metal halides such as VCl₃ (Böcker, 1996), tantalum may, however, take part in the reaction. In an attempt to prepare KVCl₃ from the reaction of KCl, VCl₃ and vanadium powder, we have not only obtained K₂TaCl₆ as a by-product (Jongen & Meyer, 2004), but also K₄[Ta₆Cl₁₂]Cl₆. This appears to be the first report of such a ternary complex cluster tantalate, although the binary clusters Ta₆Cl₁₅ (von Schnering *et al.*, 1999), Ta₆Br₁₄ (Bajan & Meyer, 1995) and Ta₆I₁₄ (Artelt & Meyer, 1993) are well known. Furthermore, with niobium there is a rich chemistry with [Nb₆Cl₁₂]-type cores in both binary and ternary compounds, for example, Nb₆Cl₁₄ (Simon *et al.*, 1965), K₄Nb₆Cl₁₈ (Simon *et al.*, 1968) and Rb₄Nb₆Cl₁₈ (Reckeweg & Meyer, 1996).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The $[(Ta_6Cl_{12})Cl_6]^{4-}$ cluster anion. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, -z; (ii) x, -y, z; (iii) -x, y, -z.]

Figure 2 The unit-cell contents of K4[Ta6Cl12]Cl6.

K₄[Ta₆Cl₁₂]Cl₆ crystallizes isotypic to K₄[Nb₆Cl₁₂]Cl₆ (Simon et al., 1968) and contains octahedral clusters of Ta atoms, with Ta-Ta distances between 2.8901 (7) and 2.9011 (5) Å, which are in good agreement with the Ta-Tadistances observed in Ta₆Cl₁₅ (von Schnering et al., 1999). Twelve chloride ions bridge the edges of the Ta₆ octahedron, in order to form [Ta₆Cl₁₂]²⁺ cationic cores. The coordination of the Ta₆ octahedron is completed by a further six chloride ions that are placed terminally at the vertices of the octahedron. The Ta-Cl distances for the terminal Cl atoms are 2.553 (3) and 2.600 (2) Å, slightly longer than those for the bridging chloride atoms [Ta-Cl = 2.455 (2)-2.474 (2) Å]. The $[(Ta_6Cl_{12})Cl_6]^{4-}$ anions with site symmetry 2/m form a facecentred arrangement, whereby the potassium ions hold the $[Ta_6Cl_{18}]^{4-}$ anions together by electrostatic forces.

Experimental

K₄[Ta₆Cl₁₂]Cl₆ was obtained as a by-product in the attempt to synthesize KVCl₃, starting from VCl₃, KCl, and V powder in a sealed tantalum container jacketed by a silica ampoule. The reaction mixture was heated to 1123 K for 10 d, and then cooled slowly to room temperature. Black single crystals of K₄[Ta₆Cl₁₂]Cl₆ were selected under a microscope in an argon-filled dry-box.

 $D_x = 4.406 \text{ Mg m}^{-3}$

Cell parameters from 18943

Mo $K\alpha$ radiation

reflections

 $\mu = 25.34 \text{ mm}^{-1}$

Polyhedron, black

 $0.2 \times 0.2 \times 0.1 \text{ mm}$

T = 293 (2) K

 $\theta = 1.9 - 28.2^{\circ}$

Crystal data

$K_4[Ta_6Cl_{12}]Cl_6$
$M_r = 1880.20$
Monoclinic, $C2/m$
a = 9.9900 (12) Å
b = 16.5228 (18) Å
c = 9.4745 (10) Å
$\beta = 115.005 \ (8)^{\circ}$
V = 1417.3 (3) Å ³
Z = 2

Data collection

Stoe IPDS-II diffractometer ω and φ scans Absorption correction: numerical [X-RED32 (Stoe & Cie, 2002) and X-SHAPE (Stoe & Cie, 1999)] $T_{min} = 0.034, T_{max} = 0.101$ 9391 measured reflections Refinement	1608 independent reflections 1423 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 27.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -21 \rightarrow 21$ $l = -12 \rightarrow 12$
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.029$	where $P = (F_o^2 + 2F_c^2)/3$

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.067$ S = 1.041608 reflections 70 parameters

Table 1

Selected geometric parameters (Å, °).

Ta1-Cl2 ^{iv}	2.455 (2)	Ta1-Ta2 ^{iv}	2.8920 (5)
Ta1-Cl1	2.469 (2)	Ta1-Ta1 ^v	2.8944 (6)
Ta1-Cl3	2.473 (2)	Ta1-Ta2	2.9011 (5)
Ta1-Cl4	2.474 (2)	Ta2-Cl2	2.464 (2)
Ta1-Cl5	2.600 (2)	Ta2-Cl1	2.472 (2)
Ta1—Ta1 ⁱⁱ	2.8901 (7)	Ta2-Cl6	2.553 (3)
Ta1 ⁱⁱ -Ta1-Ta2 ^{iv}	60.022 (8)	Ta1 ^v -Ta1-Ta2	59.869 (14)
Ta1 ⁱⁱ -Ta1-Ta1 ^v	90	Ta1 ^v —Ta2—Ta1 ⁿ	89.831 (15)
Ta2 ^{iv} -Ta1-Ta1 ^v	60.179 (13)	Ta1 ^{iv} —Ta2—Ta1 ⁱⁱ	59.952 (14)
Ta1 ⁱⁱ -Ta1-Ta2	60.125 (8)	Ta1—Ta2—Ta1 ⁱⁱ	59.750 (16)
Ta2 ^{iv} -Ta1-Ta2	90.169 (15)		. ,

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 1.75 \ {\rm e} \ {\rm \AA}$

 $\Delta \rho_{\rm min} = -1.75 \text{ e } \text{\AA}^{-3}$

_3

Extinction correction: SHELXL97 Extinction coefficient: 0.00046 (6)

Symmetry codes: (ii) x, -y, z; (iv) -x, -y, 1 - z; (v) -x, y, 1 - z.

The highest peak and deepest hole in the final difference map are 1.39 and 0.88 Å from Ta2.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97.

References

- Artelt, H. M. & Meyer, G. (1993). Z. Kristallogr. 206, 306-307.
- Bajan, B. & Meyer, H.-J. (1995). Z. Kristallogr. 210, 607-607.
- Böcker, M. (1996). Dissertation, Universität Hannover, Germany.
- Brandenburg, K. (1996). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn Germany
- Jongen, L. & Meyer, G. (2004). Acta Cryst. E60, i91-i92.
- Reckeweg, O. & Meyer, H.-J. (1996). Z. Kristallogr. 211, 396-396.
- Schnering, H. G. von, Vu, D., Jin, S.-L. & Peters, K. (1999). Z. Kristallogr. 214, 15 - 16
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
- Simon, A., von Schnering, H. G. & Woerle, H. (1965). Z. Anorg. Allg. Chem. 339, 155-170.
- Simon, A., von Schnering, H. G. & Schäfer, H. (1968). Z. Anorg. Allg. Chem. 361, 235-246.
- Stoe & Cie (1999). X-SHAPE. Version 1.06. Stoe & Cie, Darmstadt, Germany. Stoe & Cie (2002). X-AREA (MainMenu Version 1.16) and X-RED32 (Version 1.22). Stoe & Cie, Darmstadt, Germany.